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1. The Big Question 
 
Universal to systems so various and complex as the foundations of mathematics, 
cryptography, computer science, artificial intelligence, and morphogenesis is the 
“the concept of ‘mechanical procedure’ (alias ‘algorithm’ or ‘computation 
procedure’ or ‘finite combinatorial procedure’). This concept is shown to be 
equivalent to that of a ‘Turing machine.’ [In fact,] due to A.M. Turing’s work, a 
precise and unquestionably adequate definition of the general concept of formal 
system can now be given” (Gödel in Davis 1965: 71–72,). For this triumph, inter 
alia, the world is now celebrating the centenary of the mathematician Alan 
Mathison Turing (1912–1954).1 The mathematical universality of the Turing 
machine — the abstract system of computation — implies that it is not only 
relevant to biolinguistic research, but intrinsic to linguistic — indeed any 
cognitive-neurobiological — computation. To demonstrate this is the deside-
ratum of my proposed Turing Program for Linguistic Theory (TPLT). The proposal 
is very summary and very sketchy; I proffer no answers, only approaches to 
questions. 
 One of the “Big Questions” of the Turing Centenary (see http://www. 
turingcentenary.eu) is whether there exists “a successful mathematical model of 
intelligent thought”. The answer is surely not yet, but I am sure there will be. 
Cognition is clearly computational (see Gallistel & King 2009) and computation is 
mathematical by definition: Procedures are run to determine the symbolic 
outputs (values) of functions given symbolic inputs (arguments); in the domain 
of the brain, the running of procedures is referred to informally as ‘thinking’. In a 
successful model of this process, functions would be “completely determined” 
(Turing 1936: 232, emphasis original) by rules and representations so “perfectly 
explicit” (Chomsky 1965: 4) as to be automatable.2 
                                                
      For comments and criticisms, my many thanks to Bob Berwick, Noam Chomsky, Randy 

Gallistel, Marc Hauser, Steve Pinker, and Ian Roberts. 
    1 From the editors of the “Turing at 100” special issue of Nature (2012, 482: 440): 

Nature invites its readers to embrace and celebrate [Turing,] one of the brightest 
minds of all time […]. The scope of Turing’s achievements is extraordinary. Mathe-
maticians will honour the man who cracked David Hilbert’s Entscheidungsproblem or 
‘decision problem,’ and cryptographers and historians will remember him as the 
man who broke Nazi Germany’s Enigma code and helped to shorten the Second 
World War. Engineers will hail the founder of the digital age and artificial 
intelligence. Biologists will pay homage to the theoretician of morphogenesis, and 
physicists will raise a glass to the pioneer of nonlinear dynamics. 

    2 For “if you can’t program it, you haven’t understood it” (Deutsch 2011: 146, emphasis original). 
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 The successful model would be descriptively and explanatorily adequate (see 
Chomsky 1964): It would completely describe what the system of rules and 
representations is (see Roberts 2011) and completely explain how it develops — 
how internal and external factors determine the genotype-to-phenotype 
expression of the cognitive system (see Pinker 1984). The model might even go 
beyond explanatory adequacy (see Chomsky 2004a) to answer the biggest 
question of all: Why does the system assume this one form out of the infinity of 
conceivable forms? The answer might ultimately derive from computational 
constraints reducible to mathematical laws. This model would thus succeed in 
explaining not only something of the specific nature of intelligence, but ultimately 
something of the general nature of reality.3  
 These what, how, and why questions are obviously too big to answer as 
framed, and must therefore be decomposed into smaller solvable problems. 
Hence I propose the TPLT, a research program based on Turing’s mathematics, to 
discover and model mathematically important aspects of intelligent thought in 
the domain of language. 
 
2. Language 
 
One strategy for answering the general question whether there could be a 
successful mathematical model of intelligent thought is to reformulate it as a 
mathematical modeling problem for a specific form of human intelligence. The 
form I propose to consider is that of language. 
 

Why study language? [One reason is to] discover abstract principles that 
govern its structure and use, principles that are universal by biological 
necessity and not mere historical accident, that derive from mental 
characteristics of the species […]. By studying the properties of natural 
languages, their structure, organization, and use, we may hope to gain some 
understanding of the specific characteristics of human intelligence. We may 
hope to learn something about human nature; something significant, if it is 
true that human cognitive capacity is the truly distinctive and most 
remarkable characteristic of the species.          (Chomsky 1975: 4) 

 
 As an explanandum of scientific inquiry, ‘intelligence’ is so polysemous 
that any theory not formalizing it is “too meaningless to deserve discussion” 
(Turing 1950: 442).4,5 Mutatis mutandis for ‘language’, commonly conflated with 

                                                
    3 I am but one of many to have conjectured that fundamentally the universe is mathematical 

(computational/informational). 
    4 Polysemy is not the only (or even the main) problem. As Noam Chomsky (p.c.) observes, the 

question whether a machine really thinks is equally meaningless to the question whether a 
submarine really swims: “These questions have to do with choice of metaphor. They are not 
substantive. Questions about swimming, thinking, [etc.] are about the meanings of linguistic 
elements/concepts, and how they are used” (see Chomsky 2009). 

    5 Essentialism is comparably meaningless: “[S]ooner or later we will be able to assemble 
programs of great problem-solving ability from complex combinations of heuristic devices 
— multiple optimizers, pattern-recognition tricks, planning algebras, recursive adminis-
tration procedures, and the like. In no one of these will we find the seat of intelligence. 
Should we ask what intelligence ‘really is’?” (Minsky 1963: 446–447). Like an onion — that 
imperishable if slightly stale staple of analogies — we can peel away the purely mechanical 
functions of the mind in search of the ‘real’ mind. If “we eventually come to the skin which 
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any system of communication or representation (perhaps quasi-symbolic); or 
interpreted as a social-political construct governed by shared norms and 
conventions of usage; or classified as “the totality of utterances made in a speech 
community” (Bloomfield 1926: 155); or reduced to a Skinnerian repertoire of 
habits, abilities, and dispositions to respond to verbal stimuli; or stipulated to be 
a set of essentially Quinean well-formed formulae; or obfuscated in a Wittgen-
steinian game or “form of life”. By contrast, modern linguistics — generative 
linguistics (subsuming biolinguistics) — established and expounded by Noam 
Chomsky, in a Turing-style consilience of the formal and natural sciences, adopts 
a rigorous and empirical definition of ‘language’ as an I-language: A cognitive 
computational system — a function in intension — internal to an individual of the 
species Homo sapiens sapiens.6,7 The function recursively generates syntactic struc-
tures mappable via formal semantics and rule-based morphology–phonology to 
interfaces with conceptual-intentional and sensory-motor systems, respectively. I-
language is thus a system of d-infinity (discrete/denumerable/digital infinity) 
analogous to the natural numbers: A finite system that in principle can generate 
an infinite set of hierarchically structured expressions by recursively combining 
discrete elements.  
 A generative system strongly generates structures/sets (material to linguistic 
cognition) and weakly generates strings/sequences (marginal to linguistic cog-
nition). The structures, not the strings, represent the grammatical information 
mappable to representations of semantic and morphological-phonological 
information, as evidenced by the fact that one string can correspond to many 
structures (in a many-one function). Consider that the one string the boy saw the 
man with binoculars is two-ways ambiguous because it corresponds to two 
possible structures representing two possible interpretations: (i) {{the, boy}, {saw, 
{the, {man, {with, binoculars}}}}}; (ii) {{the, boy}, {{saw, {the, man}}, {with binoculars}}}. 
 The strong generative capacity of the language faculty was probably 
exapted in human evolution to connect interfaces with systems necessary for 
general intelligence (see Hauser 2009).8 For instance, Minsky (1963) argues that 
the sophistication of human pattern-recognition necessitates “provisions for 
recursive, or at least hierarchical use of previous results” as in the “articulation” 
of a scene into descriptions of “elementary figures” and “subexpressions […] 
designating complex subfigures” with a “figure […] first divided into two parts; 
[and] then [with] each part […] described using the same machinery” (pp. 434, 
423).  

                                                                                                                                 
has nothing in it”, we cannot but conclude that “the whole mind is mechanical” (Turing 
1950: 454–455). 

    6 To define the function in extension is to define the set of syntactic objects (strings/structures) 
it generates (see Church 1941). For linguistic theory, the function needs to be defined in 
intension: The definition of the function qua procedure for generating sets of structures; the 
properties of the structures derive, in part, from the properties of the function. 

    7 Of course, a universal — species-typical — I-language can be abstracted from particular I-
languages for formal and empirical inquiry. And if Platonically inclined, we may abstract a 
universal I-language as a mathematical object for metaphysical analysis. 

    8 Updated with technology from generative linguistics, the general problem solving program 
T.O.T.E. of Miller, Galanter, and Pribram (1960) has been argued to be active in linguistic 
and extralinguistic domains (see Jackendoff 2007). 



Biolinguistics    Forum   
 

225 

 And as McCarthy (1956) explained, recursively hierarchical generativity is 
necessary for complex planning methods because inefficient if not technically 
intractable problems can be solved only by decomposition into tractable and 
efficient sub-problems; composition of the functions and solutions for the latter 
can solve the former for infinite sets of problems.9 Accordingly, recursively 
generated “Hierarchy […] is one of the central structural schemes that the 
architect of complexity uses” (Simon 1962: 468) (see Turing 1947 on the central 
importance of ‘subsidiary tables’, i.e. recursive subroutines).  
 
3. Language and the Brain 
 
I submit that the object of linguistic inquiry is, or can be regarded as, “the thing 
in itself”, a computational — ergo mathematical — system abstracted away from 
spatiotemporal contingencies, as a Turing machine is with its memory space and 
operating time unlimited: “With this will come a mathematical characterization 
of a class of […] functions, the functions ‘computed’ by these Turing machines. 
These functions will be called computable functions, [identifiable with] the intuitive 
concept of effectively calculable function” (Davis 1958: 3). In short, “[s]omething 
is computable if it can be computed by a Turing machine” (Gallistel & King 2009: 
105)10 and “[a]ny Turing machine is completely described by a machine table” 
(Putnam 1975: 365), a functional organization, specifying its mathematical-logical 
rules and representations, not its physical implementation (if it even has one): 
“[T]he ‘logical description’ of a Turing machine does not include any specifi-
cation of the physical nature of [its rules and representations] — or indeed, of the 
physical nature of the whole machine […]. In other words, a given ‘Turing 
machine’ is an abstract machine which may be physically realized in an almost 
infinite number of different ways” (Putnam 1975: 371, emphases original), if at 
all.11 So it is mere “superstition” to attach “[i]mportance […] to the fact that 
modern digital computers are electrical, and that the nervous system also is 
electrical. Since Babbage’s machine was not electrical, and since all digital 
computers are in a sense equivalent, we see that this use of electricity cannot be 
of theoretical importance […]. If we wish to find […] similarities, we should look 
rather for mathematical analogies of function” (Turing 1950: 439, emphasis added).12  
 Consistent with this reasoning, the object of linguistic inquiry can be 
defined as a form of mathematical-functional competence: the “underlying system of 
                                                
    9 Behaviorist psychology assumed nonhierarchical chaining theories (Markov models), but 

these were determined to be inadequate by Lashley (1951) in a paper (unappreciated until 
Chomsky 1959b) on the necessity of hierarchical planning in solving the problem of serially-
ordered behavior. 

    10 In this proposal I do not address the limits of the computable (e.g., the relation of artificial 
neural networks, so-called ‘Super-Turing machines’, etc. to classical Turing machines). That 
is a task for the TPLT. 

    11 The general and necessary and sufficient conditions an object must satisfy for it to be 
defined as a (type of) Turing machine — a computer — are purely mathematical-functional 
(see Carnap 1955 on such intensional definitions). 

    12 Charles Babbage (1791–1871) was a Cambridge mathematician and designer of the Differ-
ence Engine and the Analytical Engine, which “had all the essential ideas” (i.e. the mathe-
matical-functional components and procedures) of Turing’s computers (Turing 1950: 439), 
but were mechanical. 
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rules” (Chomsky 1965: 4) in the mind that “represents the information concerning 
sentence structure that is available, in principle, to one who has acquired the 
language” (Chomsky 1963: 326–327). This information is represented as an 
“idealization […] leaving out any limitations […] of memory, time, and access” 
(Chomsky 1965: 4, 10). Idealization of the linguistic system reveals the 
mathematical-functional components and procedures necessary and sufficient to 
define it as a subtype of Turing machine. Such idealization is part and parcel of 
the methodology and the metaphysics of normal science, which proceeds by the 
“making of abstract mathematical models of the universe to which at least the 
physicists give a higher degree of reality than they accord the ordinary world of 
sensation” (Weinberg 1976: 28, emphasis added).13 For those working in the 
Turing Program for Linguistic Theory (TPLT), it would be natural to give the 
highest degree of reality to the mathematical form of I-language. 
 In the “world of sensation”, things in themselves, often abstract, are 
confounded by arbitrary constraints, often physical. For computational systems, 
confounding the abstract with the physical can conflate the truistic yet only lip 
serviced distinction between software and hardware; thus this important 
distinction remains unassimilated, preventing recognition of the fact that “[a]s 
our knowledge increases, the abstract mathematical world becomes farther 
removed from the world of sensation” (Weinberg 1976: 28). For instance: 
  

You know that if your computer beats you at chess, it is really the program 
that has beaten you, not the silicon atoms or the computer as such. The 
abstract program is instantiated physically as a high-level behaviour of vast 
numbers of atoms, but the explanation of why it has beaten you cannot be 
expressed without also referring to the program in its own right. That 
program has also been instantiated, unchanged, in a long chain of different 
physical substrates, including neurons in the brains of the programmers and 
radio waves when you downloaded the program via wireless networking, 
and finally as states of long- and short-term memory banks in your 
computer. The specifics of that chain of instantiations may be relevant to 
explaining how the program reached you, but it is irrelevant to why it beat 
you: there, the content of the knowledge (in it, and in you) is the whole 
story. That story is an explanation that refers ineluctably to abstractions; and 
therefore those abstractions exist, and really do affect physical objects in the 
way required by the explanation. 

(Deutsch 2011: 114–115, emphases original)14 
 
Consistent with this reasoning, it is not unreasonable to “give a higher degree of 
reality” to an “abstract mathematical model” of linguistic computation than to its 
implementation in the “ordinary world of sensation.” But this poses a problem 
for the “Mind, Mechanism and Mathematics” theme of the Turing Centenary:  
 

The joint study of brain and language […] has achieved some basic results 
correlating linguistic phenomena with brain responses, but has not 
advanced to any explanatory theory that identifies the nature of linguistic 
computation in the brain […]. The absence of an explanatory theory of this 
type is the result of the conceptual granularity mismatch and the ontological 
incommensurability between the foundational concepts of linguistics and 

                                                
    13 This can be construed as a restatement of the Platonic theory of forms. 
    14 This is to restate the Aristotelean distinction of matter and form. 
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those of neurobiology […]. Consequently, there is an absence of reasonable 
linking hypotheses by which one can explore how brain mechanisms form 
the basis for linguistic computation.       (Poeppel & Embick 2005: 14–15) 

 
 The ‘conceptual granularity’ in theories of I-languages is measured on 
‘higher’ computational and algorithmic levels whereas the primitives of neuro-
science are posited on the ‘lower’ implementational level (see Marr 1982). Prima 
facie, the ontologies of these levels are incommensurable: set-formation, phrases, 
and so on in linguistics; action potentials, neurons, and so forth in neuroscience. 
If a mathematical model of intelligent thought is to be formulated — and a fortiori 
realized as artificial intelligence — a novel and nontrivial unification of the levels 
of analysis, the levels “at which any machine carrying out an information-
processing task must be understood” (Marr 1982: 25), is imperative, requiring 
interdisciplinary research. The concept that unifies the research is computation — 
essential to which is information — and the concept that unifies computation is 
the Turing machine. Indeed, the beauty of the Turing machine is that in its 
abstractness it subsumes and thereby relates all computational primitives; in 
principle therefore it renders commensurable the computational ontologies of 
linguistics and neuroscience — or so I would endeavor to prove in the TPLT. 
 A Turing machine is a mathematical abstraction, not a physical device, but 
my theory is that the information it specifies in the form of I-language must be 
encoded in the human genetic program — and/or derived from the mathema-
tical laws of nature (‘third factors’ in the sense of Chomsky 2005) — and 
expressed in the brain. Central to the machine is a generative procedure for d-
infinity; however, “[a]lthough the characterizations of what might be the most 
basic linguistic operations must be considered one of the deepest and most 
pressing in experimental language research, we know virtually nothing about the 
neuronal implementation of the putative primitives of linguistic computation” 
(Poeppel & Omaki 2008: 246). So is presented the great challenge for the TPLT: To 
precisify (formalize) the definitions of linguistic primitives in order that ‘linking 
hypotheses’ (not mere correlations) to as yet undiscovered neurobiological primi-
tives can be formed. 
 
4. Generative Systems 
 
It was in the theory of computability and its equivalent formalisms that the 
infinite generative capacity of a finite system was formalized and abstracted and 
thereby made available to theories of natural language (see Chomsky 1955 for a 
discussion of the intellectual zeitgeist and the influence of mathematical logic, 
computability theory, etc. at the time generative linguistics emerged in the 1950s). 
In particular, a generative grammar15 was defined as a set of rules that recursively 
generate (enumerate/specify) the sentences of a language in the form of a 
production system as defined by Post (1944) and exapted by Chomsky (1951): 
 
(1) ϕ1, …, ϕn → ϕn+1 

                                                
    15 Linguists use the term with systematic ambiguity to refer to the explananda of linguistic 

theory (i.e. I-languages) and to the explanantia (i.e. theories of I-languages). 
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 “[E]ach of the ϕi is a structure of some sort and […] the relation → is to be 
interpreted as expressing the fact that if our process of recursive specification 
generates the structures ϕ1, …, ϕn then it also generates the structure ϕn+1” 
(Chomsky & Miller 1963: 284); the inductive (recursive) definition derives infinite 
sets of structures. The objective of this formalization was analogous to “[t]he 
objective of formalizing a mathematical theory a la Hilbert, [i.e.] to remove all 
uncertainty about what constitutes a proof in the theory, […] to establish an 
algorithm for the notion of proof” (Kleene 1981: 47) (see Davis 2012 on Hilbert’s 
program). Chomsky (1956: 117) observed that a derivation as in (1) is analogous 
to a proof with ϕ1, …, ϕn as the set of axioms, the rewrite rule (production) → as 
the rule of inference, and the derived structure ϕn+1 as the lemma/theorem. For a 
toy model, let (2) be a simplified phrase structure grammar with S = Start symbol 
Sentence, ⌒ = concatenation, # = boundary symbol, N[P] = Noun [Phrase], V[P] = 
Verb [Phrase]:    
 
(2) #⌒S⌒# 
 S → NP⌒VP 
 VP → V⌒NP 
 NP → the⌒man, the⌒book 
 V → took 
 
(3) is one possible derivation given the grammar (production system) in (2): 
 
(3) #⌒S⌒# 
 #⌒NP⌒VP⌒# 
 #⌒the⌒man⌒VP⌒# 
 #⌒the⌒man⌒V⌒NP⌒# 
 #⌒the⌒man⌒took⌒NP⌒# 
 #⌒the⌒man⌒took⌒the⌒book⌒# 
 
The derivation proceeds deterministically, stepwise, “remov[ing] all uncertainty 
about what constitutes a [derivation] in the theory”. 
 Restricted and unrestricted production systems were proved by Post (1944, 
1947) to be formally equivalent to the effectively calculable functions — and by 
extension the λ-calculus and by extension Herbrand-Gödel general recursion 
(Gödel 1934, Church 1936, Kleene 1936) — proved by Turing (1936) to be 
equivalent to the computable functions.16,17 These equivalences necessitated 
additional restrictions on generative grammars (or seemed to): “[A]n arbitrary 
Turing machine, or an unrestricted rewriting system, is too unstructured to serve 
as a grammar […]. Obviously, a computer program that succeeded in generating 

                                                
    16 Independent of Turing, Post (1936) formulated a computational (mathematical) machine 

equivalent to Turing machines and Gödel-Church recursiveness — and inferred from it 
provocative psychological conclusions (contradicting those of Penrose 1989). 

    17 A Turing machine M can be described by a set Σ of rewrite rules that convert a string #S0ϕ# 
to #S# just in case M accepts #ϕ#. (Given the determinism of M, Σ is monogenic.) The set of 
rewrite rules Σ′ containing ! → " just in case " → ! is in Σ and containing a Stop rule #S0 → 
# is an unrestricted rewriting system. 
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sentences of a language would be, in itself, of no scientific interest unless it also 
shed some light on the kinds of structural features that distinguish languages 
from arbitrary, recursively enumerable sets” (Chomsky 1963: 359–360).18  
 Thus the Chomsky hierarchy of grammar types — type 0 (unrestricted ≈ 
Turing machines) ⊃ type 1 (context sensitive ≈ linear bounded automata) ⊃ type 2 
(context free ≈ pushdown automata) ⊃ type 3 (finite state ≈ finite automata) — 
was formulated to define the generative capacities of grammars and corres-
ponding automata (see Chomsky 1956). The objective for theoretical linguistics 
was then — and should be again — to discover the type of grammar/automaton for 
natural language; language defined as a cognitive system realizing a Turing 
machine subtype. But this research program failed because of a preoccupation 
with weakly generated strings (sentences) rather than strongly generated 
structures. In the original conception of the hierarchy (see Chomsky 1959a), but 
not since (see Boden 2006), it was understood that merely enumerating sentences 
was of no interest to the empirical science of natural language: “Along with a 
specification of the class F of grammars, a theory of language must indicate how, 
in general, relevant structural information can be obtained for a particular sentence 
generated by a particular grammar” (Chomsky 1959a: 138, emphasis added). 
Such a theory of the hierarchy has yet to be formulated. A novel mathematical 
model — a hierarchy revamped for strong generation — is necessary; hence the 
proposed TPLT. 
 With such mathematical formalism, I would not be “play[ing] mathema-
tical games”, but rather “describ[ing] reality” (Chomsky 1955: 81), which is 
mathematical: That is, I would not be precisifying mathematically a theory of a 
non-mathematical system, but formulating a mathematically precise theory of a 
cognitive system that is mathematical; the theory needs to be mathematical 
because the phenomenon is mathematical (see Turing 1954). With such 
apparatus, generative grammar substantializes the romantic intuition of language 
as “the infinite use of finite means” (von Humboldt 1836: 122).   
 Intuition is to be explained by a theory of linguistic computation; it is to be 
derived (as an effect), not stipulated (as a cause).19 This “move from the intuitive 
hints and examples of traditional grammar to explicit generative procedures” 
(Chomsky 1995: 24) was but a subroutine in the general research program 
starting with the demonstration that “the computable numbers include all 
numbers which could naturally be regarded as computable” (Turing 1936: 230, 
emphasis added). Indeed, in constructing abstract machines, Turing and 
Chomsky — like all theorists of algorithms — were exorcising ghosts: “If the 

                                                
    18 See Pinker (1979) for a discussion on the (un)decidability and (un)learnability of recursively 

enumerable sets. 
    19 Explanations must ‘go all the way down’, a nontrivial truism: “In imagining that there is a 

machine whose construction would enable it to think, to sense, and to have perception, one 
could conceive it enlarged while retaining the same proportions, so that one could enter into 
it, just like into a windmill. Supposing this, one should, when visiting within it, find only 
parts pushing one another, never anything by which to explain a perception” (Leibniz 1714: 
83). If intuition were ‘in control’ of the cognitive-neurobiological windmill, an explanation 
for it would be necessary, so the explanation must go all the way down, but where it 
‘bottoms out’ is a mystery — perhaps one of “[nature’s] ultimate secrets [stored in] that 
obscurity, in which they ever did and ever will remain” (Hume 1763: 323). 
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grammar is […] perfectly explicit — in other words, if it does not rely on the 
intelligence of the understanding reader but rather provides an explicit analysis 
of his contribution — we may […] call it a generative grammar” (Chomsky 1965: 4); 
“[w]e may compare a man in the process of computing a real number to a 
machine which is only capable of a finite number of [configurations]. If at each 
stage the motion of the machine […] is completely determined by the configu-
ration, we shall call the machine an ‘automatic machine’” (Turing 1936: 231–232, 
emphasis original), now called a Turing machine.  
 With the ghost exorcised, the elementary components and procedures of 
generative grammar must reduce to the elementary components and procedures 
of the Turing machine, consistent with the thesis that if a function f is effectively 
calculable, then f is computable by a Turing machine, hence by the Universal 
Turing machine — the computer which can assume the form of any Turing 
machine M given the mathematical-functional description (machine table) of M 
as input.20 The formulation of a generative grammar as a Turing machine would 
be novel to the TPLT and necessary for progress in discovering — and realizing 
artificially — the system for cognitive-biological computation.  
 Generative grammar was initially formulated as a Post-production system, 
but that project in “mathematical linguistics is [now] in a plateau”, having “got 
about as far as it could from the point of view of any impact on [empirical] lingu-
istics” (Chomsky 2004b: 68–69) because now “virtually the entire subject [of 
mathematical linguistics] deals with weak generation; strong generation, while 
definable, is [now] too complex for much in the way of mathematical inquiry” 
(Chomsky 2007: 1097). Only strong generation encodes grammatical information, 
and therefore mathematical linguistics must be formulated in its terms to impact 
empirical linguistics.  
 One problem is that a formulation of strong generative capacity in Post-
production systems is infeasible. However there is a different and deeper prob-
lem: Even strong generation is insufficient for empirical adequacy. As with weak 
generation, a grammar defined only in terms of strong generative capacity is a 
function defined in extension (i.e. defined in terms of expressions generated) 
when the desideratum of linguistic theory is a function defined in intension (i.e. 
defined as the generator of expressions). The reasons for this desideratum are 
self-evident. First, the enumeration of the extensional set is possible only by 
running the procedure for the intensional function; thus the logical priority of the 
latter over the former.21 Second, the ontological status of the sets of expressions is 
debated (see Chomsky 1986, 2001, Postal 2004, 2009), but the reality of the 
generator is manifest in the behavior of any normal human engaged in linguistic 
creativity, the ‘infinite use of finite means’. It is this function in intension that 
evolved in the brain; the complexity of Post-production systems cannot be 
posited with plausibility in theories of neurobiology and its evolution (see Ber-

                                                
    20 Turing discovered that a program can be a form of data. The profundity of this equation has 

not yet been appreciated in biolinguistics. 
    21 Gödel recognized the extensional equivalence of Herbrand-Gödel recursiveness, λ-calculus, 

and Turing machines, but by intensional analysis was convinced that, in his words, “the 
correct definition of mechanical computability was established beyond any doubt by 
Turing” (see Soare 2009).  
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wick 2011).22 
 A novel theory of generative capacity is necessary, and here “Turing’s 
computability is intrinsically persuasive in the sense that the ideas embodied in it 
directly support the thesis that the functions encompassed are all for which there 
are algorithms” (Kleene 1981: 49). If the project is to unify the computational, 
algorithmic, and implementational levels of language — and ultimately 
intelligence — then the Turing machine is ideal, for it defines the mathematical-
functional components and procedures that any computational system must 
realize: “[Turing’s] concepts underlying the design of computing machines arise 
out of a kind of conceptual necessity. [I]f one analyzes any computing machine that 
is powerful, fast, and efficient, one will find these concepts realized in its 
functional structure. [And yet Turing’s concepts] have been largely ignored in 
contemporary efforts to imagine how the brain might carry out the computations 
that the behavioral data imply it does carry out” (Gallistel & King 2009: 125, 144, 
emphases added).23  
 Linguistic computation is demonstrably powerful, fast, and efficient, and 
yet contemporary biolinguistics — indeed all of theoretical linguistics and 
neurolinguistics — has largely ignored Turing’s concepts. If I-language were 
precisified as a form of Turing machine, our imagination for how I-language 
computes in mathematical abstraction and how it relates to concrete computation 
in a brain or machine would be profoundly expanded — so as, perhaps, to 
compass the truth. Such an expansion of the imagination would be the goal of the 
TPLT. 
 

[Imagination] is that which penetrates into the unseen worlds around us, the 
worlds of Science […]. Those who have learned to walk on the threshold of 
the unknown worlds […] may then with the fair white wings of Imagination 
hope to soar further into the unexplored amidst which we live. 

(Lady Lovelace, Babbage’s programmer, in Gleick 2011) 
 
 Research at the abstract computational level constrains research at the con-
crete implementational level: For instance, if research on the former level 
demonstrates that the mind does generate d-infinity, then it is incumbent upon 
research at the latter level of the brain to demonstrate how.24,25 Failure to concede 

                                                
    22 Some neurobiologists (e.g., Zylberberg et al. 2011), do posit ‘production rules’ in neuronal 

computation, but these are not Post-productions.   
    23 I cannot overemphasize the fact that the Turing machine represents the multiply realizable 

mathematical-functional structure of a computer: “Since Babbage’s machine was not electrical, 
and since all digital computers are in a sense equivalent, we see that this use of electricity [in 
brains and computers] cannot be of theoretical importance […]. If we wish to find […] 
similarities we should look rather for mathematical analogies of function” (Turing 1950: 439, 
emphasis added); “[t]he brain is a purely physical object made up of completely sterile and 
inanimate components, all of which obey exactly the same laws as those that govern the rest 
of the universe. The key is not the stuff out of which brains are made, but the patterns that 
can come to exist inside the stuff of the brain. Brains are media that support complex 
patterns” (Hofstadter 1979: P-4, emphases original). 

    24 Analogous logic has proved successful elsewhere in science and needs to be assumed in the 
sciences of mind and brain: “[Computational-Representational] theories [of the mind] will 
provide guidelines for the search for [neurophysiological] mechanisms, much as nineteenth-
century chemistry provided crucial empirical conditions for radical revision of fundamental 
physics. The common slogan that ‘the mental is the neurophysiological at a higher level’ — 
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this top-down logic has retarded research, as with “[c]onnectionists draw[ing] 
their computational conclusions from architectural commitments”, which is 
fallacious given our limited understanding of the mathematical-functional mean-
ing of neuronal architecture, “whereas computationalists draw their architectural 
conclusions from their computational commitments” (Gallistel & King 2009: ix), 
which is sound because of our greater understanding of computation, due to 
Turing (see Vaux & Watumull 2012 for a critique of connectionism as imple-
mented in Optimality Theory phonology). The understanding of mental software 
thus precedes and conditions the understanding of neurophysiological hardware: 
“[I]t is the mentalistic studies that will ultimately be of greatest value for the 
investigation of neurophysiological mechanisms, since they alone are concerned 
with determining abstractly the properties that such mechanisms must exhibit 
and the functions they must perform” (Chomsky 1965: 193).  
 Hence it is necessary, as neurobiologists Zylberberg et al. (2011: 294) argue, 
for research at the lower level to “investigate which neural architecture could 
implement a Brain Turing Machine”, which neural architecture could implement 
“the concept of a production […] essentially equivalent to the action performed 
by a Turing machine in a single step”, necessitating a “selection of productions 
[…] determined by the contents of working memory, which plays the role of the 
tape in the Turing machine […]. Iteration of the cycle of production selection and 
action constitutes the basis of Turing-like programs”.26 For the ‘Brain Turing 
Machine’ research program to succeed, the objects of inquiry must be identified 
by novel and precise higher level definitions of Turing’s components and 
procedures (e.g., ‘tape’, ‘production’, etc.). To formulate such definitions, defin-
ing objectives to unify the sciences of mind and brain would be my ambition for 
the TPLT. As of yet, I can proffer merely quasi-formal definitions and simplified 
(simplistic) prototypes of theories and models that in future research could 
answer big questions of minds, machines, and mathematics. 
 

                                                                                                                                 
where C-R theories are placed within the ‘mental’ — has matters backwards. It should be 
rephrased as the speculation that the neurophysiological may turn out to be ‘the mental at a 
lower level’” (Chomsky 2000: 25–26). 

    25 Given the evidence for cognitive computation, it is in my judgment logically necessary to 
assume the language faculty to be a form of Turing machine with addressable read/write 
memory. This logic applies to the brain generally (Gallistel & King 2009: 125, 105, i): If “the 
brain is an organ of computation[,] then to understand the brain one must understand 
computation”, which necessitates formalization; “[Turing] created a formalization that 
defined a class of machines”, with mathematical-functional components and procedures so 
elementary as to be multiply physically realizable. And “[b]y mathematically specifying the 
nature of these machines, and demonstrating their far-reaching capabilities, [Turing] laid a 
rigorous foundation for our understanding of what it means to say something is com-
putable”. A formalization can in this way define conditions of adequacy that any theory in a 
particular domain of inquiry must satisfy to be true. Therefore, if it is demonstrated by 
research on higher levels of analysis that “brains are powerful organs of computation”, and 
that a formally definable “[addressable read/write] memory mechanism is indispensable in 
powerful computing devices”, then we must demand of neuroscience an implementational 
theory of an addressable read/write memory. 

    26 Interesting and unorthodox work in neurobiology (e.g., Gallistel & King 2009, Hameroff & 
Penrose 1996) speculates that subcellular systems (e.g., in microtubules) could be efficiently 
implementing components and procedures of the Brain Turing Machine. 
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5. The Linguistic Turing Machine 
 
A Turing machine is not a physical device — nor an intended model/simulation 
thereof — but rather a mathematical abstraction representing the functional 
conditions necessary and sufficient for any system — including the brain — to be 
computational. Let the components of the linguistic Turing machine L be a 
control unit, a read/write head, and a tape.   
 
(4) The linguistic Turing machine L is the 5-tuple (Q, #, $, #S, #H)27,28 
 Q: Set of states/instructions (i.e., principles and parameters) 
 Γ: Set of symbols for syntactic objects (e.g., lexical items, phrases, etc.)  

δ: Q x Γ → Q x Γ (i.e. transition function from state/symbol to state/symbol 
by search/merge)  

 #S (∈ Γ): Start (boundary) symbol 
 #H (∈ Γ): Halt (boundary) symbol 
 
 The potentially infinite bidirectional tape represents the inputs and outputs 
(memory) of L and stores its program (which can thereby be modified in language 
acquisition); for empirical adequacy (e.g., syntactic transformations), the 
symbolic memory of the tape can be structured as a stack with (a restricted form 
of) random access (NB: L is not a classical Turing machine; it is domain-specific 
and could be equipped with multiple tapes/stacks, etc.). The control unit is a 
transition function (machine table) defining a finite set of states and a finite set of 
instructions for the operation of L given a state and an input represented on the 
tape and/or possibly a symbol on the stack memory; the states and instructions 
are defined by universal linguistic principles and parameterization for particular 
natural languages (see Roberts 2011 for a computational theory of parametric 
variation with principled constraints). The read/write head is a search/merge 
procedure: Effectively, a rewrite rule of the form in (1); it reads (searches for) an 
input symbol (or symbols) on the tape/stack and, as commanded by the control 
unit, writes (merges) an output symbol on the tape (equivalently, pushes a 
                                                
    27 Different but equivalent definitions could be formulated. A formulation of the search/merge 

procedure in Polish notation could precisify the efficiency of its execution (Randy Gallistel, 
p.c.). 

    28 States for acceptance and rejection are not specified here, tentatively, because the acceptance 
(as grammatical) and rejection (as ungrammatical) of expressions are, arguably, functions of 
interpretability conditions at the interfaces with the conceptual-intentional and sensory-
motor systems; the generation and interpretation of an expression are, arguably, independent 
processes in principle (but in practice the latter can condition the former). And at the 
interfaces, an approximately continuous scale of deviance — not discrete states of gramma-
ticality (acceptance/rejection) — would probably be required: Some technically grammatical 
sentences are intuitively rejectionable and some intuitively acceptable sentences are 
technically ungrammatical and some sentences are, on some passes, of indeterminate status. 
As Putnam (1961) argues, and I concur, grammaticality judgments could be formally equi-
valent to decidability problems; perhaps, therefore, some judgments are technically undeci-
dable, but this must be investigated in the TPLT. In addition to these complexities are 
Kripke’s (1982) ‘Wittgensteinian problems’ (see Chomsky 1986), such as the issue of un-
grammaticalities being ‘mistakes’, cases of not ‘following the rules’ of grammaticality; we 
can wonder whether a linguistic Turing machine could even ‘make a mistake’ (see Turing 
1950). These would be interesting problems to address in the TPLT. 
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symbol onto the stack) in a stepwise process; and the rules themselves, stored as 
a program, can be written-to/read-from — a fact with profound implications for 
theories of the evolution of I-language, language change, language growth/ 
acquisition, syntactic computations, inter alia, to be investigated in the TPLT.    
 To recapitulate, a Turing machine is a mathematical abstraction, not a 
physical device, but my theory is that the information it specifies in the form of I-
language (4) must be encoded in the human genetic program — and/or given by 
mathematical law — and expressed in the brain. Central to the machine is the 
search/merge procedure, and yet “[a]lthough the characterizations of what 
might be the most basic linguistic operations must be considered one of the 
deepest and most pressing in experimental language research, we know virtually 
nothing about the neuronal implementation of the putative primitives of 
linguistic computation” (Poeppel & Omaki 2008: 246). Thus is presented the great 
challenge for the TPLT: To precisify (formalize) the definitions of linguistic 
primitives so that ‘linking hypotheses’ (not mere correlations) to neurobiological 
primitives — constituative of a Brain Turing Machine — can be formed. The 
beauty of the Turing machine is that in its abstractness it subsumes and thereby 
relates all computational primitives; in this way it could render commensurable 
the computational ontologies of linguistics and neuroscience. And the key to 
linking these ontologies is the generative procedure. 
 Rewrite rules of the form in (1) were defined in Chomsky normal form (5); 
this can be updated for L, with the search/merge procedure — call it Merge — 
formulated as in (6).  
 
(5) Chomsky normal form: Uppercases represent nonterminals (e.g., S, VP, NP, 

etc.), lowercases represent  terminals (e.g., the, man, took, etc.), ϵ represents 
the empty string. 

  A → BC 
  A → a 
  S → ϵ 
 
(6) Merge is a set-formation function: The syntactic objects %, &, ' can be 

simple (e.g., lexical items) or complex (e.g., phrases) such that the 
nonterminal/terminal distinction is unformulable; consequently, the 
system is simplified and generalized.29,30 

  #S → {%, #S} 
  {%, #S} → {&, {%, #S}}  
  {', #S} → {#H, {', #S}}  

                                                
    29 As a component of a Turing machine, the Merge procedure is necessary and sufficient to 

implement the elementary operations of arithmetic (consistent with the composition of func-
tions and set-theoretic definitions of the natural numbers); and interestingly, with Merge 
defined as a binary operator on the set of syntactic objects, L can be formulated as a free 
magma in universal algebra. 

    30 Boundary (Start/Halt) symbols are logically necessary for any computational system and 
can be demonstrated (see Watumull 2012) to solve problems with syntactic structures (e.g., 
labeling and linearizing the first merged elements, transferring/spelling-out the final phase, 
structuring inter-sentential coordination). 
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 To simplify: Merge(X, Y) = {X, Y}.31 A simplified derivation by Merge of the 
man took the book in (3) assumes the form in (7): The predicate and subject are 
generated by Merge in parallel and then merged: 
 
(7) #S        #S    
 {book, #S}      {man, #S}     
 {the, {book, #S}}    {the, {man, #S}} 
 {took, {the, {book, #S}}}  {#H, {the, {man, #S}}} 
 
 {{#H, {the, {man, #S}}}, {took, {the, {book, #S}}}} 
 {#H, {{#H, {the, {man, #S}}}, {took, {the, {book, #S}}}}} 
 
 It is obvious from (7) that strongly generative — structure (set) forming — 
recursion is necessary to generate any nontrivial expression: Information from 
step i must be carried forward for merger at step i + 1; as a Turing machine, L 
“carries symbolized information forward […], making it accessible to compu-
tational operations” (Gallistel & King 2009: 122).32 A finite state automaton, which 
“cannot write to tape [or push to a stack] cannot store the results of its 
computations in memory for use in subsequent computations” (Gallistel & King 
2009: 122), is provably inadequate (see Chomsky 1956). Nor is a connectionist 
network possible (probably), because a look-up table architecture — to which 
connectionist networks reduce (arguably) — cannot (or can only inefficiently) 
implement numerous linguistic phenomena such as d-infinity and phonological 
rules (see Vaux & Watumull 2012). 
 Given the generality of Merge, it is not obvious that I-language is not as 
powerful as an unrestricted Turing machine. Nor is it obvious that I-language is 
computable in general. The implications of incomputability would obviously be 
profound for our understanding not only of language, but of nature generally 
(see Cooper 2012) — implications to be explored in the TPLT. It is intriguing 
though that in the history of generative linguistics, solutions to empirical 
problems reducible to but usually unrecognized as incomputability problems 
unfailingly but unnoticeably reestablished the computability of I-language. 

                                                
    31 Merge entails ‘external’ and ‘internal’ forms: EM(X, Y | X ∉ Y ∧ Y ∉ X) = {X, Y}; IM(X, Y | X 

∈ Y v Y ∈ X) = {X, Y}. EM corresponds to phrase structure rules (and argument structure 
semantics), IM to transformation/movement rules (and discourse semantics). 

    32 Recursively generated hierarchy can be super-sentential (i.e. Merge can structure discourse 
representations) and realized in pushdown automata: 

In conversational storytelling, […] embedded stories are normally flashbacks or 
flashaheads. The system [in state q] recognizes flash markers on the incoming clause, 
normally pluperfect marking for flashbacks (accompanied perhaps by a temporal 
deictic comment like ‘before this…’) and present progressive or future tense plus 
comments for flashaheads. The flash marker effects a PUSH to the embedded story 
[state q′] which parses subsequent clauses as [stative] or [eventive] and stores them in 
[…] registers. When a clause arrives for parsing which indicates the end of the flash 
with a ‘so,’ ‘anyway,’ ‘and then,’ [etc.], which act as POP markers, the parse of the 
embedded unit is complete and the parser returns to [q] to accept further input.  

(Polanyi & Scha 1983: 164–165) 
   The recursive generation of discourse would be a research priority in the TPLT as it 

has not been in generative linguistics hitherto. 
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Indeed, I would argue — and expound in the TPLT — that the computability of I-
language would be strong evidence against ‘Super-Turing machines’ and ‘hyper-
computation’ (in I-language and beyond); I would concur that the existence of 
non-Turing processes is a “myth” (Davis 2004). So I assume that with additional 
work, I could prove Merge (as formulated in (6)) to be computable and tractable 
(i.e. efficient in being upper-bounded by a polynomial function) and optimal.33 
 The emergence of optimality — even beauty — fascinated Turing (1952); he 
thus would have been interested in the fact that binary Merge is optimal in 
minimizing formal representations and spatiotemporal resources — measurable 
by Kolmogorov complexity and similar concepts — in the process of maximizing 
the strong generation of syntactic structures, consistent with the minimax 
theorem (see von Neumann 1928, Watumull 2010).34,35 
 It has been demonstrated mathematically (see Turing 1952 on 
morphogenesis, Mandelbrot 1982 on fractals, Chaitin 2012 on natural selection) 
and simulated computationally (see Minsky 1985 on Turing machines, Wolfram 
2002 on cellular automata) that evolution does tend to converge on simple 
procedures capable of generating infinite complexity. These demonstrations and 
simulations need to be applied in biolinguistics and unified in explanation; this 
would be a project in the TPLT. 
 Watumull et al. (in preparation) conduct a rigorous mathematical and bio-
logical analysis of the hypothesis that a “computational mechanism of recursion”, 
such as Merge, “is recently evolved and unique to our species” and unique to 
language (Hauser et al. 2002: 1573).36 It has been assumed, dubiously, that this 
controversial hypothesis can be adjudicated empirically with counter-evidence 
that some language does not run recursive computation (see Everett 2005) or that 
linguistic universals do not exist at all (see Evans & Levinson 2009). This 
assumption is false (as Watumull et al. explain), but granting it arguendo, my 
formalization of I-language as the linguistic Turing machine L entails the proper-
ties of the humanly unique “computational mechanism of recursion” as one of 
many linguistic universals; this is satisfying because “[t]he most interesting 
contribution a generative grammar can make to the search for universals of 
language is specify formal systems that have putative universals as consequences, 
as opposed to merely providing a technical vocabulary in terms of which 
autonomously stipulated universals can be expressed” (Gazdar et al. 1985: 2, 
emphasis original).  
 As formulated in (6), Merge is necessarily recursive, automatically gener-
ative of hierarchically structured expressions over which set-theoretic relations 
relevant to linguistic cognition (e.g., c-command, probe–goal) are defined, not sti-
pulated. These properties derive as logical consequences from the formulation of 
Merge as the simplest read/write mechanism — logically necessary in any pow-
                                                
    33 See Watumull (2012) for examples of (in)computable linguistic phenomena, arguments 

against Super-Turing machines, and the optimality/efficiency of syntactic computations. 
    34 Syntactic structures are even fractal (see Watumull & Eglash 2011). 
    35 I argue (Watumull 2010) that Merge is a minimax function: Effectively unary (compact) but 

binary (combinatorial).  
    36 In brief, the sense of recursion in Hauser et al. (2002) is that of an effective procedure fixing a 

computable function that enumerates and maps to interfacing systems an infinite set of 
possible expressions. 
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erful/productive and economical/efficient formal system: Recursively generated 
hierarchy defined by structural (grammatical) relations is deduced — not merely 
predicted — to be a linguistic universal. To formalize this informal deduction, 
deriving additional linguistic universals, would be at the core of the TPLT.37,38  
 
6. Acquisition 
 
One of the biggest questions for the TPLT is the derivation of knowledge, a 
question embedded in the even bigger question “whether there is a characteristic 
human psychological phenotype (‘human nature’ in earlier editions) that can be 
attributed to a characteristic human genetic endowment” (Fodor 2001: 102). If the 
thesis of the TPLT that I-language is a type of Turing machine is correct, then it is 
evident that the elementary components and procedures of the linguistic Turing 
machine L must be preinstalled in — genetically specified for — the brain and/or 
given by mathematical law, and thus characterisitic of humans. Equally evident 
is the fact that variation exists in its implementation and execution: I-language is 
a species-typical property of individuals, so technically there exist as many 
languages as there exist (and have existed) individuals, and if a sufficient number 
of individuals converge (approximately) on a specific implementation and 
execution of L, they are classified as knowing the ‘same’ language (e.g., ‘English’, 
‘Swahili’, etc.). This variation is a function of the fact that some parts of I-
languages must be acquired (‘learned’) in an astonishing process that is not yet 
understood by science:  
 

A normal child acquires [linguistic] knowledge on relatively slight exposure 
and without specific training. He can then quite effortlessly make use of an 
intricate structure of specific rules and guiding principles to convey his 
thoughts and feelings to others, arousing in them novel ideas and subtle 
perceptions and judgments. For the conscious mind [of the scientist], not 
specially designed for the purpose, it remains a distant goal to reconstruct 
and comprehend what the child has done intuitively and with minimal 
effort. Thus language is a mirror of mind in a deep and significant sense. It is 
a product of human intelligence, created anew in each individual by 
operations that lie far beyond the reach of will or consciousness. 

(Chomsky 1975: 4) 
 
This is but a particular articulation of the general question posed by Bertrand 
Russell (1948: v, emphasis original): “How comes it that human beings, whose con-
tacts with the world are brief and personal and limited, are nevertheless able to know as 

                                                
    37 A profound question in computational linguistics and computational neuroscience is 

whether linguistic rules are structure-dependent (defined over sets) or linear-dependent 
(defined over strings) and why (see Perfors et al. 2011, Berwick et al. 2011). My answer (i.e. 
rules are structure-dependent because of the set-theoretic relations entailed by the running 
of Merge), can be deduced if the Turing machine L does in fact represent linguistic 
computation. I would show this in the TPLT. 

    38 An additional property of language predicted — deduced — to be universal on my model is 
that of binarity: Merge as defined for L is a binary function such that the expressions it 
generates are composed of (embedded) 2-sets. I can demonstrate that Merge of any arity n, n 
> 2, is either incomputable or intractable (lower bounded by an exponential function) (see 
Watumull 2012). This is interesting because many natural languages are argued to contain 
non-binary structures. 
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much as they do know?”. Any theory of mind and machine needs to answer this 
question. And by dint of logic — let alone empirical observation — the answer 
needs to be specific to the cognitive domain: 
 

From a computational point of view, the notion of a general purpose learning 
process (for example, associative learning), makes no more sense than the 
notion of a general purpose sensing organ. [P]icking up information from 
different kinds of stimuli — light, sound, mechanical, and so on — requires 
organs with structures shaped by the specific properties of the stimuli they 
possess […]. Learning different things about the world from different kinds 
of experience requires computations tailored both to what is to be learned 
and to the kind of experience from which it is to be learned […]. No one 
would suppose that [a path integration learning organ] would be of any use 
in the learning of a language. Applying this learning organ to that learning 
problem would be like trying to hear with an eye or breath with the liver.  

(Gallistel 2010: 194–196, emphasis added) 
 
 Language acquisition is patently a computational process necessitating 
procedures for the recognition and analysis of linguistic data — out of the 
“blooming, buzzing confusion” (James 1890: 488) of sensory stimuli — so as to 
map the information into the linguistic Turing machine, which must, within a 
“critical period” (see Lenneberg 1967, Pinker 1984, 1994), parameterize the initial 
state of its control unit — interpolating language-particular instructions between 
(genetically-installed/mathematically-given) language-universal principles — so 
as to generate outputs consistent with the inputs and ultimately attain (grow) a 
steady state of linguistic competence. To discover the mechanisms of this process, 
its complexity can be abstracted into the simplicity of a Turing machine, but as of 
yet, the abstraction has not been conducted — another job for the TPLT. 
 Reinforcing the classic argument from the poverty of the stimulus (see 
Chomsky 1980) — that is, an innate language acquisition device LAD is necessary 
because the linguistic competence the child displays is underdetermined by the 
linguistic data to which it is exposed — is an argument from the complexity of 
the computation (see Aaronson 2011). For instance, let C be a child of generation 
g unequipped with the domain-specific LAD and exposed to a set of n-bit strings 
(sentences) weakly generated by paths in a nondeterministic finite automaton M 
(the grammar of generation g-1) with a number of states < n.39 It has been proved 
mathematically (see Kearns & Valiant 1994) that if C can reconstruct M — if the 
child can form the grammar — then C can break the RSA cryptosystem, which is 
technically intractable.40 “The grammar of any real human language is much too 
rich and complicated to be captured by a finite automaton. So this result is saying 
that even learning the least expressive, unrealistically simple language is already 
as hard as breaking RSA” (Aaronson 2011). Neither C nor any efficient algorithm 

                                                
    39 The primary linguistic data to which the child is exposed are strings from which the 

strongly generated structures must be reconstructed. But this reconstruction is technically an 
‘ill-posed problem’ if no LAD is assumed — indeed incomputable in general as stated in 
Rice’s Theorem (see Batchelder & Wexler 1979 for a related discussion). 

    40 RSA encodes messages on the Internet by raising the encoded message to an exponent 
modulo a composite (semiprime) number p with neither of its prime factors given. To 
decode the message, it is necessary (though not sufficient) to factor p into two primes. 
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yet formulated by computer scientists can break RSA,41 but C (assuming it to be a 
normal child) attains/grows an I-language. It follows that C must be genetically 
preprogrammed with some type of LAD.42 
 The LAD could run the ‘semantic bootstrapping’ algorithm rigorously and 
empirically defined and expounded by Steven Pinker (1984). The LAD (gen-
etically) en-codes a set of semantic primitives that recognize syntactic categories 
(genetically specified) given in the linguistic input. With the categories 
recognized, the child can infer some of the rules particular to the language 
expressed in the input; the child can then apply these rules to additional input, 
recognizing additional categories and acquiring additional rules, etc., so as 
ultimately to attain (grow) the steady state. This bootstrapping logic was 
formalized (Pinker 1984), but needs to be updated into a Turing machine to prove 
its success in satisfying conditions any theory of the LAD must satisfy (Pinker 
1979): (i) learnability (languages are acquired); (ii) equipotentiality (the LAD must 
run for all natural languages); (iii) time (languages are acquired in efficient time); 
(iv) input (the input information in the theory must be realistic); (v) development 
(the stages of acquisition are predict-able); (vi) cognitive (the theory of the LAD 
must be compatible with theories of extralinguistic cognitive faculties). These 
conditions could be efficiently satisfied in a PAC algorithm (see Valiant 1984) 
running in a hierarchy of linguistic parameters (see Roberts 2011). 
 A PAC (“probably approximately correct”) model is an efficient, poly-
nomial (not exponential) bounded algorithm presented with a set of (random) 
points x1, …, xn from some set S with the points classified f(x1), …, f(xn). The 
model succeeds if the function f is inferred such that f(x) can be predicted for the 
majority of future points x ∈ S. The function f is a member of a hypothesis class H 
(the set of possible hypotheses). The form of H is important: 
 

[T]he PAC approach has the advantage [over a Bayesian approach] of 
requiring only a qualitative decision about which hypotheses one wants to 
consider, rather than a quantitive prior over hypotheses. 

(Aaronson 2011, emphases original) 
 
 For language (see de Wolf 1997), let the domain S be the set of all possible 
sentences (which in the TPLT I would define in terms of strong generation); a 
function f is a grammar such that H is the set of possible grammars (genetically 
specified and mathematically governed); the child needs to succeed in 
converging on f given a set of sentences x1, …, xn. The algorithm can query an 
oracle device (Turing 1939) as to the membership of a given x in S for a given f; an 
oracle is a ‘black box’ connected to a Turing machine to which queries can be 
entered and from which answers are returned. For language, the child does not 
query persons in its external environment (obviously), but (unconsciously) of 
internal representations of syntactic structure; those representations genetically 
specified constitute the ‘oracular information’. (‘Universal Grammar’ is a theory 
of the genetically installed linguistic oracle.) Polynomial PAC acquisition of type 

                                                
    41 I set aside Shor’s quantum algorithm (see Shor 1997). 
    42 See Pinker (2002) on the problems with presuming the child brain to be equipped with “little 

mechanism and lots of blank sheets” such that a learning machine can be “easily program-
med” (Turing 1950: 456). 
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3 languages is possible only with membership queries (see Angluin 1987); it has 
not been proved — yet — that type 2 or type 1 languages can be acquired even 
with membership queries.43  
 A proof could be possible if these grammars are reformulated in the lingu-
istic Turing machine because the structures Merge generates in parsing (i.e. the 
reverse derivations the child performs in recognizing and analyzing linguistic 
data) necessitate querying to be interpretable (i.e. mappable into the initial 
(genetically determined) state of I-language). Some answers are given in the 
structure (e.g., those defining arrangements of phrases, etc.), obviating oracle 
queries; residual answers need to be given in the genetic endowment as oracular 
information (e.g., the semantic and syntactic primitives of Pinker 1984) and/or 
derived from mathematical law. So designed, acquisition is the process of 
running a bootstrapping PAC algorithm on a hierarchy of queries, the answers to 
which specify the setting of language-particular parameters. Ian Roberts has 
established and is expounding a rigorous research program on parameter hierar-
chies that derives linguistic universals. Thus, it could be that the “innate [lingu-
istic system] contains little more than the single combinatorial operation Merge 
and a schema for syntactic categories and features” (Roberts 2011). 
 In sum, I-language could reduce to the Turing machine L: To prove this — 
and ergo prove the possibility of a unification via mathematics of mind and 
machine — would be the triumph of the TPLT. 
 
7. The Big Answers 
 
The success of the TPLT, however small, could constitute a proof of concept for a 
strategy to answer the Big Question of the Turing Centenary as to whether there 
could be “a successful mathematical model of intelligent thought”. I-language is 
an organ of human intelligence, and I submit that a successful mathematical 
model of linguistic cognition is within reach. 
 

[O]ut of a lot of the very interesting work now going in [biolinguistics] there 
may come a sharpening and clarification of notions which would make it 
possible to undertake a new mathematical study, and maybe a lot of the 
questions that were asked about phrase-structure grammars [in the 1950s–
1960s] could now be re-asked and many new questions could be asked 
about these new […] systems. At that point one would hope that there 
would develop a new upsurge of mathematical linguistics and at that point I 
think […] mathematical logic might very well be relevant. Ideas from 
recursive function theory and model theory and the theory of more 
elaborate logics seem at least to be in the same neighborhood as the kind of 
formal questions suggested by language study and it might turn out that a 
new field would develop out of this convergence.       (Chomsky 2004b: 69) 

 
To work for such a convergence would be to share and substantiate Turing’s 
dream that not only can we model nature mathematically, but we may even 
discover that, fundamentally, nature (reality) is mathematical. 
 

                                                
    43 Until the Chomsky hierarchy is updated in the TPLT in terms of strong generation, it is not 

possible to accept or reject these proofs as conclusive.  
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